skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ware, Jessica L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Abstract The striped emeralds (SomatochloraSelys) are a Holarctic group of medium‐sized metallic green dragonflies that mainly inhabit bogs and seepages, alpine streams, lakes, channels and lowland brooks. With 42 species they are the most diverse genus within Corduliidae (Odonata: Anisoptera). Systematic, taxonomic and biogeographic resolution withinSomatochloraremains unclear, with numerous hypotheses of relatedness based on wing veins, male claspers (epiproct and paraprocts) and nymphs. Furthermore,Somatochlora borisiwas recently described as a new genus (Corduliochlora) based on 17 morphological characters, but its position with respect toSomatochlorais unclear. We present a phylogenetic reconstruction ofSomatochlorausing Anchored Hybrid Enrichment (AHE) sequences of 40/42Somatochloraspecies (includingCorduliochlora borisi). Our data recover the monophyly ofSomatochlora, withC. borisirecovered as sister to the remainingSomatochlora. We also recover three highly supported clades and one of mixed support; this lack of resolution is most likely due to incomplete lineage sorting, third‐codon position saturation based on iterative analyses run on variations of our dataset and hybridization. Furthermore, we constructed a dataset for all species based on 20 morphological characters from the literature which were used to evaluate phylogenetic groups recovered with molecular data; the data support the validity ofCorduliochloraas a genus distinct fromSomatochlora. Finally, divergence time estimation and biogeographic analysis indicateSomatochloraoriginated in the Western North Hemisphere during the Miocene, with three dispersal events to the Eastern North Hemisphere (11, 7 and 5 Ma, respectively) across the Beringian Land Bridge. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026
  4. Neurocordulia, commonly called shadowdragons, are crepuscular dragonflies, flying mainly at dusk. The genus comprises seven species, which occur across the eastern part of Canada and the United States. Here, we used targeted enrichment probes to sequence ~1000 loci for all specimens of each species, allowing for the first phylogenetic assessment of the genus. Additionally, we collected individuals of N. yamaskanensis from a population in Ontario, Canada, and used whole genome resequencing to estimate population structure. Beyond broadly reconstructing the phylogeny of Neurocordulia, we provided a comprehensive bibliography review of past research on the genus, a key to the species, and distribution models for each species. 
    more » « less
    Free, publicly-accessible full text available January 31, 2026
  5. Free, publicly-accessible full text available November 1, 2025
  6. Mountains and islands provide an opportunity for studying the biogeography of diversification and population fragmentation. Aotearoa (New Zealand) is an excellent location to investigate both phenomena due to alpine emergence and oceanic separation. While it would be expected that separation across oceanic and elevation gradients are major barriers to gene flow in animals, including aquatic insects, such hypotheses have not been thoroughly tested in these taxa. By integrating population genomic from sub-genomic Anchored-Hybrid Enrichment sequencing, ecological niche modeling, and morphological analyses from scanning-electron microscopy, we show that tectonic uplift and oceanic vicariance are implicated in speciation and population structure in Kapokapowai (Uropetala) dragonflies. Although Te Moana o Raukawa (Cook Strait), is likely responsible for some of the genetic structure observed, speciation has not yet occurred in populations separated by the strait. We find that the altitudinal gradient across Kā Tiritiri-o-te-Moana (the Southern Alps) is not impervious but it significantly restricts gene flow between aforementioned species. Our data support the hypothesis of an active colonization of Kā Tiritiri-o-te-Moana by the ancestral population of Kapokapowai, followed by a recolonization of the lowlands. These findings provide key foundations for the study of lineages endemic to Aotearoa. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025
  7. Hesler, Louis (Ed.)
    Abstract Insects are declining in abundance and species richness, globally. This has broad implications for the ecology of our planet, many of which we are only beginning to understand. Comprehensive, large-scale efforts are urgently needed to quantify and mitigate insect biodiversity loss. Because there is broad interest in this topic from a range of scientists, policymakers, and the general public, we posit that such endeavors will be most effective with precise and standardized terms. The Entomological Society of America is the world’s largest association of professional entomologists and is ideally positioned to lead the way on this front. We provide here a glossary of definitions for biodiversity loss terminology. This can be used to enhance and clarify communication among entomologists and others with an interest in addressing the multiple overlapping research, policy, and outreach challenges surrounding this urgent issue. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  8. Disjunct biogeographic patterns of similar species remain enigmatic within evolutionary biology. Disparate distributions typically reflect species responses to major historical events including past climate change, tectonics, dispersal, and local extinction. Paleo-ecological niche modeling (PaleoENM) has proven useful in inferring the causes of disjunct distributions within charismatic and well-studied taxa including mammals, plants, and birds, but remains under-explored in insects. The relictual Asian dragonfly genus Epiophlebia (Suborder Epiophlebioptera: Epiophlebiidae) allows us a novel opportunity to explore PaleoENM in the context of disjunct distributions due to their endemism to the Japanese islands, Himalayas, China, and North Korea. The aim of this paper is to investigate the potential causes behind the modern distribution of Epiophlebia by inferring the historical range of these species within the Last Glacial Maximum (LGM), thereby highlighting the utility of PaleoENM in the context of odonate biogeography. Our results indicate possible past routes of gene flow of Epiophlebia during the LGM due to high habitat suitability of the genus stretching from the Himalayas to Japan. Furthermore, our results predict several unsampled areas which have the potential to harbor new populations of the genus. 
    more » « less
  9. Abstract Using recently published chromosome‐length genome assemblies of two damselfly species,Ischnura elegansandPlatycnemis pennipes, and two dragonfly species,Pantala flavescensandTanypteryx hageni, we demonstrate that the autosomes of Odonata have undergone few fission, fusion, or inversion events, despite 250 million years of separation. In the four genomes discussed here, our results show that all autosomes have a clear ortholog in the ancestral karyotype. Despite this clear chromosomal orthology, we demonstrate that different factors, including concentration of repeat dynamics, GC content, relative position on the chromosome, and the relative proportion of coding sequence all influence the density of syntenic blocks across chromosomes. However, these factors do not interact to influence synteny the same way in any two pairs of species, nor is any one factor retained in all four species. Furthermore, it was previously unknown whether the micro‐chromosomes in Odonata are descended from one ancestral chromosome. Despite structural rearrangements, our evidence suggests that the micro‐chromosomes in the sampled Odonata do indeed descend from an ancestral chromosome, and that the micro‐chromosome inP. flavescenswas lost through fusion with autosomes. 
    more » « less